Surface Curvature Line Clustering for Polyp Detection in CT Colonography

نویسندگان

  • Lingxiao Zhao
  • Vincent Frans van Ravesteijn
  • Charl P. Botha
  • Roel Truyen
  • Frans Vos
  • Frits H. Post
چکیده

Automatic polyp detection is a helpful addition to laborious visual inspection in CT colonography. Traditional detection methods are based on calculating image features at discrete positions on the colon wall. However large-scale surface shapes are not captured. This paper presents a novel approach to aggregate surface shape information for automatic polyp detection. The iso-surface of the colon wall can be partitioned into geometrically homogeneous regions based on clustering of curvature lines, using a spectral clustering algorithm and a symmetric line similarity measure. Each partition corresponds with the surface area that is covered by a single cluster. For each of the clusters, a number of features are calculated, based on the volumetric shape index and the surface curvedness, to select the surface partition corresponding to the cap of a polyp. We have applied our clustering approach to nine annotated patient datasets. Results show that the surface partition-based features are highly correlated with true polyp detections and can thus be used to reduce the number of false-positive detections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fold removal in CT Colonography: A Physics-Based Method

Computed Tomographic Colonography (CTC) produces 2-d and 3-d images of the colon using computed tomography (CT). The main goal of CTC is to detect small lumps on the colon surface called polyps, which are known to be precursors to colon cancer. Radiologists are therefore interested in exploring the inner surface of the colon to detect polyps. Polyps may be detected by visual inspection of colon...

متن کامل

The use of 3D surface fitting for robust polyp detection and classification in CT colonography

In this paper we describe the development of a computationally efficient computer-aided detection (CAD) algorithm based on the evaluation of the surface morphology that is employed for the detection of colonic polyps in computed tomography (CT) colonography. Initial polyp candidate voxels were detected using the surface normal intersection values. These candidate voxels were clustered using the...

متن کامل

Detection of Protrusions in Curved Folded Surfaces Applied to Automated Polyp Detection in CT Colonography

Over the past years many computer aided diagnosis (CAD) schemes have been presented for the detection of colonic polyps in CT Colonography. The vast majority of these methods (implicitly) model polyps as approximately spherical protrusions. Polyp shape and size varies greatly, however and is often far from spherical. We propose a shape and size invariant method to detect suspicious regions. The...

متن کامل

Efficient Seeding and Defragmentation of Curvature Streamlines for Colonic Polyp Detection

Many computer aided diagnosis (CAD) schemes have been developed for colon cancer detection using Virtual Colonoscopy (VC). In earlier work, we developed an automatic polyp detection method integrating flow visualization techniques, that forms part of the CAD functionality of an existing Virtual Colonoscopy pipeline. Curvature streamlines were used to characterize polyp surface shape. Features d...

متن کامل

Reduction of false positives by internal features for polyp detection in CT-based virtual colonoscopy.

In this paper, we present a computer-aided detection (CAD) method to extract and use internal features to reduce false positive (FP) rate generated by surface-based measures on the inner colon wall in computed tomographic (CT) colonography. Firstly, a new shape description global curvature, which can provide an overall shape description of the colon wall, is introduced to improve the detection ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008